Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(4): e2306396, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712176

RESUMO

Rechargeable zinc-air batteries (Re-ZABs) are one of the most promising next-generation batteries that can hold more energy while being cost-effective and safer than existing devices. Nevertheless, zinc dendrites, non-portability, and limited charge-discharge cycles have long been obstacles to the commercialization of Re-ZABs. Over the past 30 years, milestone breakthroughs have been made in technical indicators (safety, high energy density, and long battery life), battery components (air cathode, zinc anode, and gas diffusion layer), and battery configurations (flexibility and portability), however, a comprehensive review on advanced design strategies for Re-ZABs system from multiple angles is still lacking. This review underscores the progress and strategies proposed so far to pursuit the high-efficiency Re-ZABs system, including the aspects of rechargeability (from primary to rechargeable), air cathode (from unifunctional to bifunctional), zinc anode (from dendritic to stable), electrolytes (from aqueous to non-aqueous), battery configurations (from non-portable to portable), and industrialization progress (from laboratorial to practical). Critical appraisals of the advanced modification approaches (such as surface/interface modulation, nanoconfinement catalysis, defect electrochemistry, synergistic electrocatalysis, etc.) are highlighted for cost-effective flexible Re-ZABs with good sustainability and high energy density. Finally, insights are further rendered properly for the future research directions of advanced zinc-air batteries.

2.
J Colloid Interface Sci ; 606(Pt 1): 544-555, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416450

RESUMO

Photocatalysts with highly efficient charge separation are of critical significance for improving photocatalytic hydrogen production performance. Herein, a cost-effective and high-performance composite photocatalyst, cobalt-phosphonate-derived defect-rich cobalt pyrophosphate hybrids (CoPPi-M) modified Cd0.5Zn0.5S is rationally devised via defect and interface engineering, in which the co-catalyst CoPPi-M delivers a strong interaction with host photocatalyst Cd0.5Zn0.5S, rendering Cd0.5Zn0.5S/CoPPi-M with a remarkably improved efficiency of charge separation and migration. Besides, Cd0.5Zn0.5S/CoPPi-M exhibits a hydrophilic surface with ample access to electrons and a strong reduction ability of electrons. Benefiting from these advantages, the integration of defect-rich cobalt pyrophosphate and Cd0.5Zn0.5S enables Cd0.5Zn0.5S/CoPPi-M-5% with high photocatalytic H2 production rate of 6.87 mmol g-1h-1, which is 2.46 times higher than that of pristine Cd0.5Zn0.5S, and the notable apparent quantum efficiency (AQE) is 20.7% at 420 nm. This work provides a promising route for promoting the photocatalytic performance of non-precious hybrid photocatalyst via defect and interface engineering, and advances energy-generation and environment-restoration devices.


Assuntos
Cobalto , Hidrogênio , Cádmio , Difosfatos , Zinco
3.
Small ; 17(38): e2101856, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34390182

RESUMO

Developing cost-efficient multifunctional electrocatalysts is highly critical for the integrated electrochemical energy-conversion systems such as water electrolysis based on hydrogen/oxygen evolution reactions (HER/OER) and metal-air batteries based on OER/oxygen reduction reactions (ORR). The core-shell structured materials with transition metal phosphide as the core and nitrogen-doped carbon (NC) as the shell have been known as promising HER electrocatalysts. However, their oxygen-related electrocatalytic activities still remain unsatisfactory, which severely limits their further applications. Herein an effective strategy to improve the core and shell performances of core-shell Co2 P@NC electrocatalysts through secondary metal (e.g., Fe, Ni, Mo, Al, Mn) doping (termed M-Co2 P@M-N-C) is reported. The as-synthesized M-Co2 P@M-N-C electrocatalysts show multifunctional HER/OER/ORR activities and good integrated capabilities for overall water splitting and Zn-air batteries. Among the M-Co2 P@M-N-C catalysts, Fe-Co2 P@Fe-N-C electrocatalyst exhibits the best catalytic activities, which is closely related to the configuration of highly active species (Fe-doping Co2 P core and Fe-N-C shell) and their subtle synergy, and a stable carbon shell for outstanding durability. Combination of electrochemical-based in situ Fourier transform infrared spectroscopy with extensive experimental investigation provides deep insights into the origin of the activity and the underlying electrocatalytic mechanisms at the molecular level.

4.
ACS Nano ; 15(7): 12109-12118, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34152122

RESUMO

For electrochemical nitrogen reduction reaction (NRR), hybridizing transition metal (TM) compounds with nitrogen-doped carbonaceous materials has been recognized as a promising strategy to improve the activity and stability of electrocatalysts due to the synergistic interaction from the TM-N-C active sites. Nevertheless, up to date, the fundamental mechanism of this so-called synergistic electrocatalysis for NRR is still unclear. Particularly, it remains ambiguous which configuration of N dopants, either pyridinic N or pyrrolic N, when coordinated with the TM, predominately contributes to this synergy. Herein, a self-assembled three-dimensional 1T-phase MoS2 microsphere coupled with N-doped carbon was developed (termed MoS2/NC), showing an impressive NRR performance in neutral medium. The hybridization of MoS2 and N-doped carbon can synergistically enhance the NRR efficiency by optimizing the electron transfer of catalyst. Acidification/blocking/poisoning experiments reveal the decisive role of pyridinic-N-Mo bonding, rather than pyrrolic-N-Mo bonding, in synergistically enhancing NRR electrocatalysis. The electrochemical-based in situ Fourier transform infrared spectroscopy (in situ FTIR) technology provides deep insights into the substantial contribution of pyridinic-N-MoS2 sites to NRR electrocatalysis and further uncover the underlying mechanism (associative pathway) at a molecular level.

5.
Small ; 17(22): e2005304, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33605008

RESUMO

Nanoporous metal phosphonates are propelling the rapid development of emerging energy storage, catalysis, environmental intervention, and biology, the performances of which touch many fundamental aspects of portable electronics, convenient transportation, and sustainable energy conversion systems. Recent years have witnessed tremendous research breakthroughs in these fields in terms of the fascinating pore properties, the structural periodicity, and versatile skeletons of porous metal phosphonates. This review presents recent milestones of porous metal phosphonate research, from the diversified synthesis strategies for controllable pore structures, to several important applications including adsorption and separation, energy conversion and storage, heterogeneous catalysis, membrane engineering, and biomaterials. Highlights of porous structure design for metal phosphonates are described throughout the review and the current challenges and perspectives for future research in this field are discussed at the end. The aim is to provide some guidance for the rational preparation of porous metal phosphonate materials and promote further applications to meet the urgent demands in emerging applications.


Assuntos
Nanoporos , Organofosfonatos , Adsorção , Catálise , Porosidade
6.
ACS Appl Mater Interfaces ; 12(15): 17502-17508, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32195559

RESUMO

Developing cost-efficient electrocatalysts for ambient N2-to-NH3 conversion and revealing the reaction mechanism are appealing yet challenging tasks. Some transition metal oxides have been recently used to catalyze the nitrogen reduction reaction (NRR), but their further applications are greatly impeded because of their questionable conductivity, poor dispersion, limited active sites, and so forth. Herein, three-dimensional Ni foam-supported urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies (Al-Co3O4/NF) were prepared via a hydrothermal process and subsequent annealing treatment. It is shown that introducing Al atoms into Co3O4 effectively tunes the electronic properties of the catalyst, and the increased surface oxygen vacancies induced by Al doping facilitate the activation of nitrogen. What is more, this urchin-like nanostructure, demonstrating an ability to limit the coalescence of gas bubbles, enables the rapid removal of small gas bubbles and better exposure of active sites to N2, thus yielding an impressive ammonia electrosynthesis activity (NH3 yield rate: 6.48 × 10-11 mol s-1 cm-2; Faradaic efficiency: 6.25%) in 0.1 M KOH. Electrochemical-based in situ Fourier transform infrared spectroscopy was employed to study the mechanism of NRR, indicating an associative alternating pathway.

7.
ChemSusChem ; 13(12): 3061-3078, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32202392

RESUMO

Ammonia (NH3 ) electrosynthesis from atmospheric nitrogen (N2 ) and water is emerging as a promising alternative to the energy-intensive Haber-Bosch process; however, such a process is difficult to perform due to the inherent inertness of N2 molecules together with low solubility in aqueous solutions. Although many active electrocatalysts have been used to electrocatalyze the N2 reduction reaction (NRR), unsatisfactory NH3 yields and lower Faraday efficiency are still far from practical industrial production, and thus, considerable research efforts are being devoted to address these problems. Nevertheless, most reports still mainly focus on the preparation of electrocatalysts and largely ignore a summary of optimization-modification strategies for the NRR. In this review, a general introduction to the NRR mechanism is presented to provide a reasonable guide for the design of highly active catalysts. Then, four categories of NRR electrocatalysts, according to chemical compositions, are surveyed, as well as several strategies for promoting the catalytic activity and efficiency. Later, strategies for developing efficient N2 fixation systems are discussed. Finally, current challenges and future perspectives in the context of the NRR are highlighted. This review sheds some light on the development of highly efficient catalytic systems for NH3 synthesis and stimulates research interests in the unexplored, but promising, research field of the NRR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...